diff --git a/scipost_django/commentaries/tests/test_views.py b/scipost_django/commentaries/tests/test_views.py
index 0f095812d102d501e87eca845b97550a6f333986..8c6084a7606adae1c3611d7856e08e19fa3ae9b3 100644
--- a/scipost_django/commentaries/tests/test_views.py
+++ b/scipost_django/commentaries/tests/test_views.py
@@ -31,6 +31,7 @@ class PrefillUsingDOITest(TestCase):
     def test_submit_valid_physrev_doi(self):
         post_data = {"doi": self.physrev_doi}
         request = RequestFactory().post(self.target, post_data)
+        request.session = {}
         request.user = UserFactory()
 
         response = prefill_using_DOI(request)
diff --git a/scipost_django/scipost/tests/test_services.py b/scipost_django/scipost/tests/test_services.py
index 138dbf68f008466d246ea4822eaa2ab8821ae7c2..38259224c61905e0772295cb6eb089b8a335e4a3 100644
--- a/scipost_django/scipost/tests/test_services.py
+++ b/scipost_django/scipost/tests/test_services.py
@@ -8,10 +8,14 @@ from django.test import TestCase
 
 from ..services import ArxivCaller, DOICaller
 
-from submissions.models import Submission
+from submissions.factories import PreprintServerFactory
 
 
 class ArxivCallerTest(TestCase):
+    def setUp(self) -> None:
+        # Create the arXiv preprint server
+        PreprintServerFactory.arxiv()
+
     def test_identifier_new_style(self):
         caller = ArxivCaller("1612.07611v1")
         self.assertTrue(caller.is_valid)
@@ -21,8 +25,10 @@ class ArxivCallerTest(TestCase):
             "abstract": "The Berezinskii-Kosterlitz-Thouless (BKT) transitions of the six-state clock\nmodel on the square lattice are investigated by means of the corner-transfer\nmatrix renormalization group method. The classical analogue of the entanglement\nentropy $S( L, T )$ is calculated for $L$ by $L$ square system up to $L = 129$,\nas a function of temperature $T$. The entropy has a peak at $T = T^{*}_{~}( L\n)$, where the temperature depends on both $L$ and boundary conditions. Applying\nthe finite-size scaling to $T^{*}_{~}( L )$ and assuming the presence of BKT\ntransitions, the transition temperature is estimated to be $T_1^{~} = 0.70$ and\n$T_2^{~} = 0.88$. The obtained results agree with previous analyses. It should\nbe noted that no thermodynamic function is used in this study.",
             "pub_abstract": "The Berezinskii-Kosterlitz-Thouless (BKT) transitions of the six-state clock\nmodel on the square lattice are investigated by means of the corner-transfer\nmatrix renormalization group method. The classical analogue of the entanglement\nentropy $S( L, T )$ is calculated for $L$ by $L$ square system up to $L = 129$,\nas a function of temperature $T$. The entropy has a peak at $T = T^{*}_{~}( L\n)$, where the temperature depends on both $L$ and boundary conditions. Applying\nthe finite-size scaling to $T^{*}_{~}( L )$ and assuming the presence of BKT\ntransitions, the transition temperature is estimated to be $T_1^{~} = 0.70$ and\n$T_2^{~} = 0.88$. The obtained results agree with previous analyses. It should\nbe noted that no thermodynamic function is used in this study.",
             "title": "Phase transition of the six-state clock model observed from the\n  entanglement entropy",
+            "preprint_link": "https://arxiv.org/abs/1612.07611v1",
             "pub_date": datetime.date(2016, 12, 22),
         }
+        del caller.data["preprint_server"]  # Remove server key before comparison
         self.assertDictEqual(caller.data, correct_data)
 
     def test_identifier_old_style(self):
@@ -35,7 +41,9 @@ class ArxivCallerTest(TestCase):
             "abstract": "A kind of least action principle is introduced for the discrete time\nevolution of one-dimensional quantum lattice models. Based on this principle,\nwe obtain an optimal condition for the matrix product states on succeeding time\nslices generated by the real-time density matrix renormalization group method.\nThis optimization can also be applied to classical simulations of quantum\ncircuits. We discuss the time reversal symmetry in the fully optimized MPS.",
             "pub_abstract": "A kind of least action principle is introduced for the discrete time\nevolution of one-dimensional quantum lattice models. Based on this principle,\nwe obtain an optimal condition for the matrix product states on succeeding time\nslices generated by the real-time density matrix renormalization group method.\nThis optimization can also be applied to classical simulations of quantum\ncircuits. We discuss the time reversal symmetry in the fully optimized MPS.",
             "title": "Least Action Principle for the Real-Time Density Matrix Renormalization\n  Group",
+            "preprint_link": "https://arxiv.org/abs/cond-mat/0612480v2",
         }
+        del caller.data["preprint_server"]  # Remove server key before comparison
         self.assertDictEqual(caller.data, correct_data)
 
     def valid_but_nonexistent_identifier(self):
@@ -46,6 +54,7 @@ class ArxivCallerTest(TestCase):
 class DOICallerTest(TestCase):
     def test_works_for_physrev_doi(self):
         caller = DOICaller("10.1103/PhysRevB.92.214427")
+
         correct_data = {
             "title": "Quasi-soliton scattering in quantum spin chains",
             "pages": "214427",
@@ -53,7 +62,11 @@ class DOICallerTest(TestCase):
             "pub_date": "2015-12-18",
             "volume": "92",
             "journal": "Physical Review B",
+            "abstract": "",  # Doesn't seem to be available for this DOI
         }
+        # Remove crossref_data from caller.data for comparison
+        del caller.data["crossref_data"]
+
         self.assertTrue(caller.is_valid)
         self.assertDictEqual(caller.data, correct_data)
 
@@ -66,8 +79,18 @@ class DOICallerTest(TestCase):
             "title": "One-particle density matrix of trapped one-dimensional impenetrable bosons from conformal invariance",
             "pages": "012",
             "journal": "SciPost Physics",
+            "abstract": "<jats:p>The one-particle density matrix of the one-dimensional\n"
+            "Tonks-Girardeau gas with inhomogeneous density profile is calculated,\n"
+            "thanks to a recent observation that relates this system to a\n"
+            "two-dimensional conformal field theory in curved space. The result is\n"
+            "asymptotically exact in the limit of large particle density and small\n"
+            "density variation, and holds for arbitrary trapping potentials. In the\n"
+            "particular case of a harmonic trap, we recover a formula obtained by\n"
+            "Forrester et al. from a different method.</jats:p>",
         }
         self.assertTrue(caller.is_valid)
+        # Remove crossref_data from caller.data for comparison
+        del caller.data["crossref_data"]
         self.assertDictEqual(caller.data, correct_data)
 
     def test_valid_but_non_existent_doi(self):